

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 3212-3215

A new synthesis of pyrrolidines via imino-aldol reaction of (2-trimethylsilylmethyl)cyclopropyl ketones with imines

Veejendra K. Yadav*, Archana Gupta

Department of Chemistry, Indian Institute of Technology, Kanpur 208 016, India

Received 18 February 2008; revised 18 March 2008; accepted 24 March 2008 Available online 28 March 2008

Abstract

A new synthesis of 2,3,5-trisubstituted pyrrolidines from the imino-aldols formed from Lewis acid-mediated reactions of (2-trimethylsilylmethyl)cyclopropyl ketones with benzylimines is described. The ring closure of the imino-aldols formed from the benzylimines of 2-chloro-, 2-fluoro-, and 2-trifluoromethylbenzaldehydes proceeds with predominantly 2,5-*anti* selectivity to generate the corresponding pyrrolidines in moderate yields.

© 2008 Elsevier Ltd. All rights reserved.

Keywords: (2-Trimethylsilylmethyl)cyclopropyl ketone; Enolate; Imino-aldol; Hg(II)-promoted aza-ring closure; 2,3,5-Trisubstituted pyrrolidine

The [3+2] addition of aldehydes, ketones, acetylenes, and allenes to 1,3-dipoles generated from silylmethylsubstituted cyclopropanes constitutes a reliable method for the stereoselective synthesis of carbocycles and heterocycles containing an oxygen atom.¹ The enolate generated from the ring-cleavage of a trimethylsilylmethyl-substituted cyclopropyl ketone has previously been reported by us to react with carbonyls to deliver aldol products that were subsequently transformed into tetrahydofuran² derivatives under oxidative conditions. As an extension, we considered the reaction of the above enolate with imines to deliver imino-aldols. Reactions allowing the formation of σ_{C-C} bonds from imines have been widely studied due to their important synthetic applications.³ The above imino-aldol products were transformed further into substituted pyrrolidine derivatives, an important five-membered ring heterocycle due to its frequent occurrence in many biologically active molecules,⁴ applications as valuable synthetic intermediates⁵ and as organocatalysts.⁶ Often the type and degree of substitution about the pyrrolidine ring can have

a pronounced effect on the biological activity of a given substrate.

We searched for a protocol for the reaction of cyclopropyl phenyl ketone **1a** with benzylimine of benzaldehyde **2a** mediated by a Lewis acid in dichloromethane. Among the several common Lewis acids, which were examined under different conditions, TiCl₄ (1.2 equiv, CH₂Cl₂, 0 °C \rightarrow rt, 6 h) was found to work reasonably well and the desired products, **3a** and **4a**, were isolated as an 80:20 diastereomeric mixture in 41% combined yield. The **2a:1a** stoichiometry was 1.5:1. The remainder of the cyclopropyl substrate was transformed into 3-butenyl phenyl ketone in 46% yield and the imine was hydrolyzed to benzaldehyde and benzylamine. Increasing the **2a:1a** stoichiometry to 3:1 did not improve the yield.

The above experiment using suspended K_2CO_3 (2 equiv) furnished the product in a slightly improved 50% yield with an identical diastereomeric ratio (Eq. 1). The remainder of the cyclopropyl substrate was transformed into 3-butenyl phenyl ketone (35% yield). With a view to effectively neutralizing any HCl that may be formed from the hydrolysis of TiCl₄ by the adventitious moisture and, thus, prevent quenching of the enolate, an experiment with a combination of TiCl₄ and Et₂AlCl (1.2 equiv each, 0 °C \rightarrow 25 °C,

^{*} Corresponding author. Tel.: +91 512 2597439; fax: +91 512 2597436. *E-mail address:* vijendra@iitk.ac.in (V. K. Yadav).

^{0040-4039/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.03.117

1 h) was carried out.^{1e} However, the reaction was complicated and several products were formed. With BF₃·OEt₂–K₂CO₃ (1.2 equiv BF₃·OEt₂, 2.0 equiv K₂CO₃, 0 °C→25 °C, 6 h), the diastereomeric ratio was raised to 87:13. However, the yield was poor (24%). The cyclopropane substrate was transformed largely into 3-butenyl phenyl ketone (67% yield). The relative stereochemistry of the imino-aldol products was determined from the relative stereochemistry of the derived pyrrolidine products that, in turn, was determined from NOE experiments (vide infra). We, therefore, used the TiCl₄–K₂CO₃ combination and explored other reactions.

The substituents on the nitrogen of the imine influenced the reaction strongly. *N*-Sulfonylimine was a poor substrate, the reaction was complicated and the desired imino-aldol product was not formed. *N-p*-Methoxy-benz-ylimine afforded the desired imino-aldol products in 41% combined yield as a 77:23 diastereomeric mixture. *N*-Benz-ylimine, therefore, offered the optimal results in terms of both the yield and the diastereoselectivity.

Having established the feasibility and optimal conditions for the imino-aldol reaction, we studied the reactions of the benzylimines of different aromatic aldehydes with cyclopropane **1a**. The imines were synthesized by condensation of benzylamine and the corresponding aldehydes in 1:1 ratio in dichloromethane in the presence of 4 Å molecular sieves, followed by filtration and concentration. The residue, thus obtained, was used directly for the reactions. As shown in Table 1, the reaction of **1a** with several benzylimines **2a–k** furnished the expected imino-aldol products in moderate yields and high diastereoselectivity. The ratio of the two diastereomers ranged from 80:20 to 98:2. Aromatic benzylimines with electron-donating substituents were less reactive than aromatic benzylimines with electron-attracting substituents (cf. entries 2–4 vs 5–11). Table 1

Reactions of 1a with imines 2a-k

	Ph SiMe ₃ + C	H ₂ Cl ₂ , 0-25 °C Ar Ph +	Ar Ph	
	1a 2a-k	3a-k	4a-k	
Entr	y Ar	Yield of 3 + 4 (%)	dr (anti:syn)	
1		50	80:20	
2	MeO	30	93:7	
3	H ₃ C	28	74:26	
4	CH3	38	88:12	
5	CF ₃	43	87:13	
6	F-	44	85:15	
7	F	41	80:20	
8	CI-	47	80:20	
9	CI	48	98:2	
10	0 ₂ N-	41	80:20	
11		43	93:7	

$$\begin{array}{c} O \\ Ph & \stackrel{\circ}{\longrightarrow} {}^{d^{*}}SiMe_{3} + \stackrel{\circ}{Ph} & \stackrel{\circ}{\longrightarrow} {}^{Ph} & \stackrel{TiCl_{4}+K_{2}CO_{3}}{CH_{2}Cl_{2}, 0 \, {}^{\circ}C, 6 \, h} \\ \mathbf{1a} & \mathbf{2a} & \stackrel{\circ}{50\%} & \mathbf{3a} & \mathbf{4a} \end{array}$$

$$\begin{array}{c} Ph & \stackrel{\circ}{\longrightarrow} {}^{Ph} & \stackrel$$

The benzylimines of vinylogous aromatic aldehydes reacted poorly. The reaction of 1a with the benzylimine of *trans*-cinnamaldehyde 2l provided the products 3l and 4l as an 85:15 diastereometic mixture in only 10% yield (Eq. 2). The benzylimines of pyridine-3-carbox-aldehyde and furfural were hydrolyzed into the corres-

ponding aldehydes and amines and all the cyclopropane had transformed into 3-butenyl phenyl ketone. Likewise, the benzylimine of 3-methyl-2-butenal also did not react; it too was hydrolyzed into its constituents and the cyclopropane substrate had transformed into 3-butenyl phenyl ketone. Aliphatic aldehydes are, therefore, unsuitable for the present imino-aldol reaction.

We next examined the reaction of *tert*-butyl ketone 1b with benzylimine 2a to assess whether the *t*-butyl group had any effect on the observed diastereoselectivity. The reaction of an isomeric mixture of 1b (trans-1b:cis-1b = 1.3:1) with 2a furnished a 94:6 mixture of the desired imino-aldols 5a and 6a in a combined 68% yield (Eq. 3). The species equivalent to 3-butenyl phenyl ketone, that is, 3-butenyl t-butyl ketone, was not formed. The higher anti-selectivity achieved from t-butyl ketone 1b in comparison to the phenyl ketone 1a suggests a discerning role of *t*-butyl-vs-phenyl in the transition state during rearrangement.

To demonstrate the synthetic utility of the present imino-aldol protocol, we have cyclized selected iminoaldols into pyrrolidine derivatives following a literature protocol (Scheme 1).⁷ Reaction of the imino-aldols, **3e,g,i**, with Hg(OCOCF₃)₂, NaHCO₃ and KBr in THF furnished the corresponding diastereomeric organomercurials **7** and **8**. These were subjected to oxidative cleavage of the σ_{C-Hg} bond using NaBH₄ and dioxygen to obtain an inseparable mixture of the diastereomeric alcohols **9** and **10**.

The assessment of the diastereomeric ratio was difficult as the key signals in the ¹H NMR spectrum of the mixture of alcohols were not discernible. The task was accomplished by preparing the corresponding acetates **11** and **12**. Further, the relative stereochemistry of the pyrrolidine derivatives was ascertained from rigorous NOE measurements. The two diastereomers shared the same cis-relationship of the substituents at positions 2 and 3 but differed from each other in the stereochemistry of the substituent at position 5. The substituent at position 5 was *anti* to the other two substituents in the major diastereomer **11** and *syn* in the minor diastereomer **12**. The results are collected in Table 2.

Scheme 1. Oxidative cyclization of the imino-aldols **3e**,**g**,**i** to the corresponding 2,3,5-trisubstituted pyrrolidine derivatives.

Table 2

Conversion of selected imino-aldol products into pyrrolidine derivatives and the diastereomeric ratios

Entry	Ar	Yield ^a (%)	dr (anti:syn) ^b
1	$2-CF_3C_6H_4$	75	60:40
2	$2-FC_6H_4$	81	70:30
3	$2-ClC_6H_4$	72	75:25

^a Yields given are those of the mixtures of acetates.

^b The diastereomeric ratio (dr) was determined from the ¹H integrals of the isomeric mixture. The *anti* and *syn* notations refer, respectively, to the relative orientations of the substituents at positions 2 and 5 of the pyrrolidine.

Scheme 2. Possible transition states T_1 and T_2 for the ring closure of **3e**,g,i to, respectively, the major and minor diastereomers **13** and **14**.

The observed diastereoselectivity from ring closure can be explained by considering the transition state geometries T_1 and T_2 (Scheme 2). Transition state T_2 suffers from 1,3diaxial steric interactions between the benzoyl group and the methylene group of the mercuronium ion. The preferred transition state T_1 , therefore, is responsible for the predominant formation of the 2,5-*anti* isomer through a 5-*exo*-tet ring closure.

In summary, we have developed a method for a highly diastereoselective synthesis of 2,3,5-trisubstituted pyrrolidines via Lewis acid-mediated imino-aldol reactions of aryl (2-trimethylsilylmethyl)cyclopropyl ketones.^{8,9} The present methodology allows, for the first time, the Lewis acid-mediated imino-aldol reaction of a cyclopropyl ketone with an imine to generate 5-aminoalkenes, which are amenable to further transformation into 2,3,5-trisubstituted pyrrolidines. An obvious limitation of the present pyrrolidine-forming protocol is the only moderate yield of the imino-aldol product.

Acknowledgments

A.G. thanks the University Grants Commission, Government of India, for a fellowship and V.K.Y. thanks the Council of Scientific & Industrial Research, Government of India, for financial assistance.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2008. 03.117.

References and notes

- (a) Yadav, V. K.; Balamurugan, R. Org. Lett. 2001, 3, 2717; (b) Yadav, V. K.; Balamurugan, R. Chem. Commun. 2002, 514; (c) Yadav, V. K.; Sriramurthy, V. Angew. Chem., Int. Ed. 2004, 43, 2669; (d) Yadav, V. K.; Vijaya Kumar, N. J. Am. Chem. Soc. 2004, 126, 8652; (e) Yadav, V. K.; Sriramurthy, V. Org. Lett. 2004, 6, 4495; (f) Yadav, V. K.; Sriramurthy, V. J. Am. Chem. Soc. 2005, 127, 16366; (g) Gupta, A.; Yadav, V. K. Tetrahedron Lett. 2006, 47, 8043; (h) Yadav, V. K.; Vijaya Kumar, N.; Parvez, M. Chem. Commun. 2007, 2281.
- 2. Yadav, V. K.; Balamurugan, R. Org. Lett. 2003, 5, 4281.
- (a) Kleinman, E.F. In Comprehensive Organic Chemistry; Trost, B. M. Ed.; 1991; Vol. 2, p 893; (b) Kobayashi, S.; Akiyama, R.; Moriwaki, M. Tetrahedron Lett. 1997, 38, 4819; (c) Battistini, L.; Zanardi, F.; Rassu, G.; Spanu, P.; Pelosi, G.; Gasparri, F. G.; Bellicci, F. M.; Casiraghi, G. Tetrahedron: Asymmetry 1997, 8, 2975; (d) Shimizu, M.; Hayakawa, R. Chem. Lett. 1999, 7, 591; (e) Shimizu, M.; Tachi, M.; Hachiya, I. Chem. Lett. 2004, 33, 1394; (f) Gil, R.; Eternot, M.; Guillerez, M.-G.; Collin, J. Tetrahedron 2004, 60, 3085; (g) Pohmakotr, M.; Yotapan, N.; Tuchinda, P.; Kuhakarn, C.; Reutrakul, V. Tetrahedron 2007, 63, 4328.
- (a) Kuwano, R.; Kashiwabara, M.; Ohsumi, M.; Kusano, H. J. Am. 4. Chem. Soc. 2008, 130, 808; (b) Pearson, W. H. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: New York, 1998; Vol. 1, p 323; (c) O'Hagan, D. Nat. Prod. Rep. 2000, 17, 435; (d) Gribble, G. W. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: Oxford, UK, 1996; Vol. 2, p 207; (e) Fiaux, H.; Popowycz, F.; Favre, S.; Schutz, C.; Vogel, P.; Lemaire, G. S.; Juillerat-Jeanneret, L. J. Med. Chem. 2005, 48, 4237; (f) Espelt, L.; Parella, T.; Bujons, J.; Solans, C.; Joglar, J.; Delgado, A.; Clapes, P. Chem. Eur. J. 2003, 9, 4887; (g) Yasuda, K.; Kizu, H.; Yamashita, T.; Kameda, Y.; Kato, A.; Nash, R. J.; Fleet, G. W. J.; Molyneux, R. J.; Asano, N. J. Nat. Prod. 2002, 65, 198; (h) Shibano, M.; Tsukamoto, D.; Kusano, G. Heterocycles 2002, 57, 1539; (i) Shibano, M.; Tsukamoto, D.; Masuda, A.; Tanaka, Y.; Kusano, G. Chem. Pharm Bull. 2001, 49, 1362; (j) Sebahar, P. R.; Williams, R. M. J. Am. Chem. Soc. 2000, 122, 5666; (k) Denhart, D. J.; Griffith, D. A.; Heathcock, C. H. J. Org. Chem. 1998, 63, 9616; (1) Garner, P.; Cox, P. B.; Anderson, J. T.; Protasiewicz, J.; Zaniewski, R. J. Org. Chem. 1997, 62, 493; (m) Yokoyama, M.; Akiba, T.; Ochiai, Y.; Momotake, A.; Togo, H. J. Org. Chem. 1996, 61, 6079; (n) Overman, L. E.; Tellew, J. E. J. Org. Chem. 1996, 61, 8338; (o) Zhou, P.; Salleh, H. M.; Honek, J. F. J. Org. Chem. 1993, 58, 264.
- (a) Li, Y.; Liu, X.; Yang, Y.; Zhao, G. J. Org. Chem. 2007, 72, 288; (b) Ori, M.; Toda, N.; Takami, K.; Tago, K.; Kogen, H. Angew. Chem., Int. Ed. 2003, 42, 2540; (c) Cossy, J.; Mirguet, O.; Pardo, D. J.; Desmuras, J.-R. Eur. J. Org. Chem. 2002, 21, 3543; (d) Cossy, J.;

Dumas, C.; Pardo, D. J. *Eur. J. Org. Chem.* **1999**, *6*, 1693; (e) Honda, T.; Ishikawa, F. *Chem. Commun.* **1999**, *12*, 1065.

- (a) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2001, 40, 3726; (b) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138; (c) List, B. Synlett 2001, 1675; (d) List, B. Tetrahedron 2002, 58, 5573; (e) List, B. Acc. Chem. Res. 2004, 37, 548; (f) Notz, W.; Tanaka, F.; Barbas, C. F. Acc. Chem. Res. 2004, 37, 580.
- 7. Takahata, H.; Bandoh, H.; Momose, T. J. Org. Chem. 1992, 57, 4401.
- 8. General procedure for the TiCl₄-mediated reaction of 1a/1b with imines: A freshly prepared solution of TiCl₄ (0.60 mmol) in CH₂Cl₂ (0.5 mL) was added to a suspension of 1a/1b (0.5 mmol) and K₂CO₃ (1 mmol) in anhydrous CH₂Cl₂ (2 mL) at 0 °C. The contents were stirred for 45 min resulting in a red colored solution. A solution of imine (0.75 mmol) in CH₂Cl₂ (0.5 mL) was added, the resultant was stirred for 5 h at 0 °C→rt and then quenched with saturated aqueous NaHCO₃ (2 mL) solution. CH₂Cl₂ (10 mL) was added and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (2 × 5 mL). The combined organic extract was washed with water (2 × 7 mL) and brine (1 × 7 mL), and dried. Removal of the solvents furnished the crude product which was filtered through a small column of silica gel using EtOAc/hexane mixtures as eluent. Separation of the diastereomers was achieved by radial chromatography.
- 9. A typical procedure for the conversion of an imino-aldol product into the 2,3,5-trisubstituted pyrrolidine derivative: $Hg(OCOCF_3)_2$ (141 mg, 0.33 mmol) was added to a solution of 3e (85 mg, 0.22 mmol) in THF (2 mL) and the reaction was stirred for 1 h at rt. Saturated NaHCO₃ (1 mL) was added to the reaction mixture under ice cooling. After 30 min of stirring, saturated aqueous KBr (158 mg, 1.32 mmol) was added to the mixture. After 2 h of stirring, the THF layer was separated and the aqueous layer was extracted with EtOAc $(3 \times 7 \text{ mL})$. The combined organic extract was washed with brine $(1 \times 7 \text{ mL})$, and dried. After evaporation, the resulting residue was filtered through a small silica gel column to yield the organomercurial bromides 7e/8e. Oxygen gas was bubbled into a suspension of NaBH₄ (13 mg, 0.33 mmol) in DMF (8 mL) for 1 h and the resultant was mixed with a solution of the above organomercurial bromide in DMF (2 mL) with continuous bubbling of oxygen. The bubbling of oxygen was continued for 1 h before ether (10 mL) was added. The reaction mixture was filtered through Celite, and the solvent was removed in vacuo. The residue was chromatographed on silica gel to yield a mixture of hydroxymethyl derivatives 9e/10e. This mixture was dissolved in pyridine (0.5 mL) at 0 °C and mixed with Ac₂O (1 mL). The reaction mixture was stirred for 8 h at 0 °C \rightarrow rt, mixed with EtOAc (10 mL), and washed with water (3 \times 10 mL). The organic extract was dried and the solvent was evaporated. The crude product was purified by column chromatography to furnish an 87:13 mixture of 11e and 12e as an oil (44 mg, 71%). The acetates were separated by radial chromatography.